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▪ Start: October 1, 2018

▪ End:   September 30, 2021

▪ Percent complete: 85%

Timeline

Budget

▪ Total project funding: 

FY20  $4.0M

▪ ANL, NREL, ORNL, LBNL, PNNL 

Barriers

Partners

Overview 

▪ Development of PHEV and EV 

batteries that meet or exceed DOE 

and USABC goals

– Cost 

– Performance 

– Safety

– Cobalt content

▪ ANL, NREL, ORNL, LBNL, PNNL

Students supported from:

▪ University of Illinois at Chicago

▪ University of Rochester

▪ Oregon State University



Relevance 

Battery 500

Realizing 

Next-Gen 

Cathodes

Silicon 

Anodes

Fast Charge

RECELL SIESta

VTO/AMO 

industry 

engagements

Multi-lab/institution efforts

Standardized testing for direct comparisons is crucial



Milestones See also BAT251, 252, 253, 167

This project thrust is tasked with the development of standards and protocols that arise 

as needed for the multi-institutional Deep Dive effort in systematically understanding 

the properties and performance of lithium-ion materials and electrochemical cells



Approach See also BAT251, 252, 253, 167
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Significant amount of data generated



Technical Accomplishments and Progress

“Voltage Fade” spanned multiple DOE laboratories
Coordination between researchers requires a standardized testing protocol

Advantages of our methodology

▪ Eases comparison between similar materials under similar testing conditions

▪ Good & reasonably fast tracking of an “average quasi-OCV” during cycling

▪ Tracking of other materials-related properties: capacities, and energy densities

▪ Measurement of the average cell resistance

Daniel Abraham, “Electrochemical Characterization of Voltage Fade in LMR-NMC cells”, U.S. Department of Energy Vehicle Technologies Office 2013 Annual Merit 

Review and Peer Evaluation Meeting, May 13 - 17, 2013, Washington, D.C., Vehicle Technologies Office.



Technical Accomplishments and Progress

“High-Energy High-Voltage” required protocol standardization
Protocol needed to show meaningful differences between mitigation strategies
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Standard protocol developed 

to track performance changes

Robust

Different researchers 

assembling cells in different 

locations had to compare 

data: reproducibility is key

Balanced

Testing had to show data 

in a reasonable amount of 

time, yet comprehensive 

enough to provide quality 

information

Aggressive

Protocol had to show 

degradation intrinsic to the 

aggressive environments 

(high voltage)

See also BAT252



Technical Accomplishments and Progress

Influence of parameters for test reproducibility
Assembly parameters were chosen to increase reproducibility across coin cells

Electrolyte volume as a function of cell stack 

pore volume shows minimum necessary 

electrolyte for cell-to-cell reproducibility

Cathode diameter (mm) / anode diameter 

(mm) shows best degree of overhang for cell-

to-cell reproducibility

Extensive work showed cell assembly parameters needed for reproducibility

Long et al., J. Electrochem Soc., 163, 2016 



Technical Accomplishments and Progress

Influence of protocol parameters on cycling results
The developed protocol is aggressive, with 300 h at top of charge over a 119 cycle protocol
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3 h hold at top of charge leads 

to slightly higher capacity, but 

worse capacity retention

3 h hold at top of charge leads to 

lower CE

3 h hold at top of charge leads to larger 

ASI increase at same cycle number

This aggressive protocol highlights known issues of the 

material; simpler protocols show higher retention and CE



Technical Accomplishments and Progress

How do we evaluate new materials?
Standardized procedures enable reproducible results

Laminate coating
• Amount of active material, carbon, binder

• Mixing and defoaming RPM and timing

• Coating/calendering thickness

Coin cell assembly
• Electrodes from one source

• Anode, cathode, and separator diameter 

• Electrolyte amount

Electrochemical testing protocols
• Same electrochemical tests

• Li and graphite anodes

• Fixed-temperature cycling

Other characterization
• Gassing, DSC, in-situ XRD

• ICP, XPS, NMR, SEM, STEM



Technical Accomplishments and Progress

Standardized half-cell protocols
~2 week protocols to quickly evaluate hand-coated laminates for material properties.

“Diagnostic” protocol

“Rate” protocol

“Diagnostic” protocol
• Uses 4.2 V and 4.5 V UCV

• Uses potentiostatic holds at LCV and UCV to 

evaluate stability and kinetics, sources of ICL

• Uses current interrupts to evaluate overpotentials 

during charge and discharge at both UCVs

“Rate” protocol
• Uses 4.3 V and 4.5 V UCV

• Incorporates constant charging current and 

variable discharge currents

• Repeats slow cycles at the beginning and end of 

each UCV to evaluate rate- and cycle-induced 

damage

Strong performers are scaled up for full-cell evaluation

See also BAT251, 252, 167



Technical Accomplishments and Progress

Standardized half-cell protocols for material evaluation 
Diagnostic electrochemical protocols can indicate important material properties
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See also BAT251, 252, 167



Technical Accomplishments and Progress

Standardized HEHV protocol is used for full-cell evaluation 
~6 week, aggressive (300 h at 100% SOC) protocol evaluates capacity and power retention
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Discharge capacity dropped 

~15% over the protocol

ASI increased ~80% 

over the protocol

FOM determined by cycle number 

at 80% of initial baseline value

Different electrolyte combinations 

can be independently evaluated

Assembly, testing, and evaluation standards allow for 

comparison between changes in the system

See also BAT251, 252, 253, 167

Tornheim et al., J. Power 

Sources., 365, 2017



Technical Accomplishments and Progress

Standardized protocol allows for direct comparisons
Flexible parameters allow for direct comparisons between materials, and across projects
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LNO and NMC622 (both synthesized and coated 

under RNGC) are compared at multiple UCVs

NMC9055 (baseline RNGC compositions, synthesized and coated 

under RNGC) and NMC532 (HEHV project baseline) are compared

Continuity of standardized protocols can compare 

different materials from different projects

See also BAT251, 252, 253, 167



Technical Accomplishments and Progress

Gassing protocol development
Determination of onset voltage and gas released for electrodes produced under RNGC

• Oxygen evolution and thermal stability 

are key factors that limit the use of LNO-

based materials

• Understanding the onset voltage and gas 

species released at the interface would 

help identify how new strategies could 

stabilize the materials

• A standardized protocol, including 

voltage range, potentiostatic hold times, 

and charging currents, was developed to 

characterize all the cathodes coated by 

the CAMP facility for this project

See also BAT251, 252, 253, 167



Technical Accomplishments and Progress

DSC protocol development
Sample preparation and test protocol consistent across samples

Standardized processes include

• Electrochemical preparation – consistent end 

state across samples 

• Rinsing procedure – amount of solvent

• Drying conditions, temperature and time

• Sample amount, as well as added 

electrolyte/sample

• Thermal equilibration time, temperature ramp 

speed, final temperature

• Number of repeats

Aged LNO

Pristine LNO

Standardized DSC protocol allows for comparisons of onset temperature, 1st

peak temperature, and total heat released between compositions/formulations

See also BAT251, 252, 253, 167



Cathode
Precursor 
Synthesis

Final Product 
(scale-up)

XRD SEM ICP NMR
Li Cell 
echem

CAMP 
electrodes

HEHV 
echem

Gassing DSC
(in situ)
Spectro.

XPS

60-20-20 x x x X x x x x X

LNO x x x X x x x x x x X X

95-0-5 x x x x x x x x x x X X

90-0-10 x x x x X X x

95-5-0 x x x x X x x

90-10-0 x x x x x x x X x x x X X

95-2.5-2.5 x x x x

90-5-5 x x x x x x x x x x x x X

94-0-6 x x x x x x x x x x x X X

92-0-6-2 x X x x x x x X x X

Effect of Mn

w/wo surface/bulk Al

Control samples 

Effect of Co

Effect of Mn & Co

Technical Accomplishments and Progress

Cathodes generated in this project undergo standardized tests
See also BAT251, 252, 253, 167

Standardized tests are underway for all scaled-up materials in this project



Technical Accomplishments and Progress

Sample of generated data (LNO)
Pristine, cycling, and post-test data all collected for LNO generated in this project. 

Map Sum 

Spectrum

Element W.t. % s

C 42.6 0.2

Ni 32.1 0.2

O 20.2 0.1

F 5.0 0.1

S 0.1 0.0
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See also BAT251, 252, 167

Screening/characterization Performance evaluation Post-test characterization

Results across multiple tests can be easily tracked and compared
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Summary See also BAT251, 252, 253, 167

• Standardizing testing procedures is crucial for identifying improvements to the system under 

test

• Multiple iterations of VTO-funded, multi-institutional projects require coordination between lab 

members

• The protocols developed under these projects highlight the known issues with the materials

• Significant work has been performed to create robust testing procedures to enable 

reproducibility across multiple researchers and National Labs

• Characterization procedures have been standardized to allow for direct comparisons between 

compositions/formulations

• These kinds of protocols are broadly applicable and can be adjusted to suit the properties and 

limitations of the material under test

• Standardizing protocols across the community is imperative to make direct comparisons and 

enable future improvements


